
CHAPTER 5: 

HASHING 

In Chapter 4, we discussed the search tree ADT, which allowed various operations 
on a set of elements. In this chapter, we discuss the hash table ADT, which 
supports only a subset of the operations allowed by binary search trees.  

The implementation of hash tables is frequently called hashing. Hashing is a 

technique used for performing insertions, deletions and finds in constant average 

time. Tree operations that require any ordering information among the elements 

are not supported efficiently. Thus, operations such as find_min, find_max, and 

the printing of the entire table in sorted order in linear time are not 

supported.  

The central data structure in this chapter is the hash table. We will  

 See several methods of implementing the hash table.  

 Compare these methods analytically.  

 Show numerous applications of hashing.  

 Compare hash tables with binary search trees.  

5.1. General Idea 

The ideal hash table data structure is merely an array of some fixed size, 

containing the keys. Typically, a key is a string with an associated value (for 

instance, salary information). We will refer to the table size as H_SIZE, with 

the understanding that this is part of a hash data structure and not merely some 

variable floating around globally. The common convention is to have the table run 

from 0 to H_SIZE-1; we will see why shortly.  

Each key is mapped into some number in the range 0 to H_SIZE - 1 and placed in 

the appropriate cell. The mapping is called a hash function, which ideally should 

be simple to compute and should ensure that any two distinct keys get different 

cells. Since there are a finite number of cells and a virtually inexhaustible 

supply of keys, this is clearly impossible, and thus we seek a hash function that 

distributes the keys evenly among the cells. Figure 5.1 is typical of a perfect 

situation. In this example, john hashes to 3, phil hashes to 4, dave hashes to 6, 

and mary hashes to 7.  
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Figure 5.1 An ideal hash table 

This is the basic idea of hashing. The only remaining problems deal with choosing 

a function, deciding what to do when two keys hash to the same value (this is 

known as a collision), and deciding on the table size.  

5.2. Hash Function 

If the input keys are integers, then simply returning key mod H_SIZE is generally 

a reasonable strategy, unless key happens to have some undesirable properties. In 

this case, the choice of hash function needs to be carefully considered. For 

instance, if the table size is 10 and the keys all end in zero, then the standard 

hash function is obviously a bad choice. For reasons we shall see later, and to 

avoid situations like the one above, it is usually a good idea to ensure that the 

table size is prime. When the input keys are random integers, then this function 

is not only very simple to compute but also distributes the keys evenly.  

Usually, the keys are strings; in this case, the hash function needs to be chosen 

carefully.  

One option is to add up the ASCII values of the characters in the string. In 
Figure 5.2 we declare the type INDEX, which is returned by the hash function. The 

routine in Figure 5.3 implements this strategy and uses the typical C method of 

stepping through a string.  

The hash function depicted in Figure 5.3 is simple to implement and computes an 

answer quickly. However, if the table size is large, the function does not 

distribute the keys well. For instance, suppose that H_SIZE = 10,007 (10,007 is a 

prime number). Suppose all the keys are eight or fewer characters long. Since a 

char has an integer value that is always at most 127, the hash function can only 

assume values between 0 and 1016, which is 127 * 8. This is clearly not an 

equitable distribution!  

typedef unsigned int INDEX; 

Figure 5.2 Type returned by hash function 
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INDEX 

hash( char *key, unsigned int H_SIZE ) 

{ 

unsigned int hash_val = 0; 

/*1*/       while( *key != '\0' ) 

/*2*/            hash_val += *key++; 

/*3*/       return( hash_val % H_SIZE ); 

} 

Figure 5.3 A simple hash function 

Another hash function is shown in Figure 5.4. This hash function assumes key has 

at least two characters plus the NULL terminator. 27 represents the number of 

letters in the English alphabet, plus the blank, and 729 is 27

2

. This function 

only examines the first three characters, but if these are random, and the table 

size is 10,007, as before, then we would expect a reasonably equitable 

distribution. Unfortunately, English is not random. Although there are 26

3

 = 

17,576 possible combinations of three characters (ignoring blanks), a check of a 

reasonably large on-line dictionary reveals that the number of different 

combinations is actually only 2,851. Even if none of these combinations collide, 

only 28 percent of the table can actually be hashed to. Thus this function, 

although easily computable, is also not appropriate if the hash table is 

reasonably large.  

Figure 5.5 shows a third attempt at a hash function. This hash function involves 

all characters in the key and can generally be expected to distribute well (it 

computes  key/key_size - i - 1] 32

i, 

and brings the result into proper 

range). The code computes a polynomial function (of 32) by use of Horner's rule. 

For instance, another way of computing h

k

 = k

1

 + 27k

2

 + 27

2

k

3

 is by the formula h

k

= 

((k

3

) * 27 + k

2

) * 27 + k

1

. Horner's rule extends this to an nth degree 

polynomial.  

We have used 32 instead of 27, because multiplication by 32 is not really a 

multiplication, but amounts to bit-shifting by five. In line 2, the addition 

could be replaced with a bitwise exclusive or, for increased speed.  

INDEX 

hash( char *key, unsigned int H_SIZE ) 

{ 

return ( ( key[0] + 27*key[1] + 729*key[2] ) % H_SIZE ); 

} 
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Figure 5.4 Another possible hash function -- not too good 

INDEX 

hash( char *key, unsigned int H_SIZE ) 

{ 

unsigned int hash_val = O; 

/*1*/       while( *key != '\0' ) 

/*2*/            hash_val = ( hash_val << 5 ) + *key++; 

/*3*/       return( hash_val % H_SIZE ); 

} 

Figure 5.5 A good hash function 

The hash function described in Figure 5.5 is not necessarily the best with 

respect to table distribution, but does have the merit of extreme simplicity (and 

speed if overflows are allowed). If the keys are very long, the hash function 

will take too long to compute. Furthermore, the early characters will wind up 

being left-shifted out of the eventual answer. A common practice in this case is 

not to use all the characters. The length and properties of the keys would then 

influence the choice. For instance, the keys could be a complete street address. 

The hash function might include a couple of characters from the street address 

and perhaps a couple of characters from the city name and ZIP code. Some 
programmers implement their hash function by using only the characters in the odd 

spaces, with the idea that the time saved computing the hash function will make 

up for a slightly less evenly distributed function.  

The main programming detail left is collision resolution. If, when inserting an 

element, it hashes to the same value as an already inserted element, then we have 

a collision and need to resolve it. There are several methods for dealing with 

this. We will discuss two of the simplest: open hashing and closed hashing.*  

*These are also commonly known as separate chaining and open addressing, 

respectively.  

5.3. Open Hashing (Separate Chaining) 

The first strategy, commonly known as either open hashing, or separate chaining, 

is to keep a list of all elements that hash to the same value. For convenience, 

our lists have headers. This makes the list implementation the same as in Chapter 

3. If space is tight, it might be preferable to avoid their use. We assume for 

this section that the keys are the first 10 perfect squares and that the hashing 

function is simply hash(x) = x mod 10. (The table size is not prime, but is used 

here for simplicity.) Figure 5.6 should make this clear.  

To perform a find, we use the hash function to determine which list to traverse. 

We then traverse this list in the normal manner, returning the position where the 
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item is found. To perform an insert, we traverse down the appropriate list to 

check whether the element is already in place (if duplicates are expected, an 

extra field is usually kept, and this field would be incremented in the event of 

a match). If the element turns out to be new, it is inserted either at the front 

of the list or at the end of the list, whichever is easiest. This is an issue 

most easily addressed while the code is being written. Sometimes new elements are 

inserted at the front of the list, since it is convenient and also because 

frequently it happens that recently inserted elements are the most likely to be 

accessed in the near future.  

  

Figure 5.6 An open hash table 

The type declarations required to implement open hashing are in Figure 5.7. The 

first few lines are the same as the linked list declarations of Chapter 3. The 

hash table structure contains the actual size and an array of linked lists, which 

are dynamically allocated when the table is initialized. The HASH_TABLE type is 

just a pointer to this structure.  

typedef struct list_node *
node_ptr;

 

struct list_node

 

{

 

element_type element;

 

node_ptr next;

 

};

 

typedef node_ptr LIST;

 

typedef node_ptr position;

 

/* LIST *the_list will be an array of lists, allocated later */

 

/* The lists will use headers, allocated later */

 

struct hash_tbl

 

{
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unsigned int table_size; 

LIST *

the_lists;

 

};

 

typedef struct hash_tbl *

HASH_TABLE;

 

Figure 5.7 Type declaration for open hash table

 

Notice that the the_lists field is actually a pointer to a pointer to a list_node structure. If 

typedefs and abstraction are not used, this can be quite confusing. 

HASH_TABLE

 

initialize_table( unsigned int table_size )

 

{

 

HASH_TABLE H;

 

int i;

 

/*1*/       if( table size < MIN_TABLE_SIZE )

 

{

 

/*2*/            error("Table size too small");

 

/*3*/            return NULL;

 

}

 

/* Allocate table */

 

/*

4*

/       H = (HASH_TABLE) malloc ( sizeof (struct hash_tbl) );

 

/*

5*

/       if( H == NULL )

 

/*6*/            fatal_error("Out of space!!!");

 

/*7*/       H->table_size = next_prime( table_size );

 

/* Allocate list pointers */

 

/*8*/       H->the_lists = (position *)

 

malloc( sizeof (LIST) *

 H->table_size );

 

/*

9*

/       if( H->the_lists == NULL )

 

/*

10*

/           fatal_error("Out of space!!!");

 

/* Allocate list headers */

 

/*11*/      for(i=0; i<H->table_size; i++ )

 

{
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/*12*/           H->the_lists[i] = (LIST) malloc 

( sizeof (struct list_node) );

 

/*

13*

/           if( H->the_lists[i] == NULL )

 

/*

14*

/                fatal_error("Out of space!!!");

 

else

 

/*15*/                H->the_lists[i]->next = NULL;

 

}

 

/*16*/      return H;

 

}

 

Figure 5.8 Initialization routine for open hash table

 

Figure 5.8 shows the initialization function, which uses the same ideas that were seen in the 

array implementation of stacks. Lines 4 through 6 allocate a hash table structure. If space is 

available, then H will point to a structure containing an integer and a pointer to a list. Line 7 

sets the table size to a prime number, and lines 8 through 10 attempt to allocate an array of 

lists. Since a LIST is defined to be a pointer, the result is an array of pointers.  

If our LIST implementation was not using headers, we could stop here. Since our implementation 

uses headers, we must allocate one header per list and set its next field to NULL. This is done 

in lines 11 through 15. Of course, lines 12 through 15 could be replaced with the statement  

H->the_lists[i] = make_null();

 

Although we have not used this option, because in this instance it is preferable to make the code 

as self-contained as possible, it is certainly worth considering. An inefficiency of our code is 

that the malloc on line 12 is performed H->table_size times. This can be avoided by replacing 

line 12 with one call to malloc before the loop occurs:  

H->the lists = (LIST*

) malloc

 

(H->table_size *

 sizeof (struct list_node));

 

Line 16 returns H. 

The call find(key, H) will return a pointer to the cell containing key. The code to implement 

this is shown in Figure 5.9. Notice that lines 2 through 5 are identical to the code to perform a 

find that is given in Chapter 3. Thus, the list ADT implementation in Chapter 3 could be used 
here. Remember that if element_type is a string, comparison and assignment must be done with 

strcmp and strcpy, respectively.  

Next comes the insertion routine. If the item to be inserted is already present, then we do 

nothing; otherwise we place it at the front of the list (see Fig. 5.10).*  

*Since the table in Figure 5.6 was created by inserting at the end of the list, the code in 

Figure 5.10 will produce a table with the lists in Figure 5.6 reversed.  
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position 

find( element_type key, HASH_TABLE H )

 

{

 

position p;

 

LIST L;

 

/*1*/       L = H->the_lists[ hash( key, H->table_size) ];

 

/*2*/       p = L->next;

 

/*3*/       while( (p != NULL) && (p->element != key) )

 

/* Probably need strcmp!! */

 

/*4*/            p = p->next;

 

/*5*/       return p;

 

}

 

Figure 5.9 Find routine for open hash table

 

void

 

insert( element_type key, HASH_TABLE H )

 

{

 

position pos, new_cell;

 

LIST L;

 

/*1*/      pos = find( key, H );

 

/*2*/      if( pos == NULL )

 

{

 

/*

3*

/          new_cell = (position) malloc(sizeof(struct list_node));

 

/*

4*

/          if( new_cell == NULL )

 

/*5*/              fatal_error("Out of space!!!");

 

else

 

{

 

/*

6*

/              L = H->the_lists[ hash( key, H->table size ) ];

 

/*

7*

/              new_cell->next = L->next;

 

/*

8*

/              new_cell->element = key; /*

 Probably need strcpy!! *

/

 

/*

9*

/              L->next = new_cell;

 

}
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} 

}

 

Figure 5.10 Insert routine for open hash table

 

The element can be placed anywhere in the list; this is most convenient in our case. Notice that 

the code to insert at the front of the list is essentially identical to the code in 

Chapter 3 

that implements a push using linked lists. Again, if the ADTs in Chapter 3 have already been 
carefully implemented, they can be used here.  

The insertion routine coded in Figure 5.10 is somewhat poorly coded, because it computes the hash 

function twice. Redundant calculations are always bad, so this code should be rewritten if it 

turns out that the hash routines account for a significant portion of a program's running time.  

The deletion routine is a straightforward implementation of deletion in a linked list, so we will 

not bother with it here. If the repertoire of hash routines does not include deletions, it is 

probably best to not use headers, since their use would provide no simplification and would waste 

considerable space. We leave this as an exercise, too.  

Any scheme could be used besides linked lists to resolve the collisions-a binary search tree or 

even another hash table would work, but we expect that if the table is large and the hash 

function is good, all the lists should be short, so it is not worthwhile to try anything 

complicated.  

We define the load factor, , of a hash table to be the ratio of the number of elements in the 

hash table to the table size. In the example above,  = 1.0. The average length of a list is 

. The effort required to perform a search is the constant time required to evaluate the hash 

function plus the time to traverse the list.  
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Figure 5.11 Closed hash table with linear probing, after each insertion

 

In an unsuccessful search, the number of links to traverse is  (excluding the final NULL 

link) on average. A successful search requires that about 1 + ( /2) links be traversed, since 

there is a guarantee that one link must be traversed (since the search is successful), and we 

also expect to go halfway down a list to find our match. This analysis shows that the table size 

is not really important, but the load factor is. The general rule for open hashing is to make the 

table size about as large as the number of elements expected (in other words, let   1). 

It is also a good idea, as mentioned before, to keep the table size prime to ensure a good 

distribution.  

5.4. Closed Hashing (Open Addressing)

 

Open hashing has the disadvantage of requiring pointers. This tends to slow the algorithm down a 

bit because of the time required to allocate new cells, and also essentially requires the 

implementation of a second data structure. Closed hashing, also known as open addressing, is an 

alternative to resolving collisions with linked lists. In a closed hashing system, if a collision 

occurs, alternate cells are tried until an empty cell is found. More formally, cells h

0

(x), h

1

(x), h

2

(x), . . . are tried in succession where h

i

(x) = (hash(x) + (i))mod H_SIZE, with 

(0) = 0. The function, , is the collision resolution strategy. Because all the data goes 

inside the table, a bigger table is needed for closed hashing than for open hashing. Generally, 

the load factor should be below  = 0.5 for closed hashing. We now look at three common 

collision resolution strategies.  

5.4.1. Linear Probing 

 

5.4.2. Quadratic Probing 

 

5.4.3. Double Hashing 

 

5.4.1. Linear Probing

 

In linear probing,  is a linear function of i, typically (i) = i. This amounts to trying 

cells sequentially (with wraparound) in search of an empty cell. Figure 5.11 shows the result of 

inserting keys {89, 18, 49, 58, 69} into a closed table using the same hash function as before 

and the collision resolution strategy, (i) = i. 

 

The first collision occurs when 49 is inserted; it is put in the next available spot, namely spot 
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0, which is open. 58 collides with 18, 89, and then 49 before an empty cell is found three away. 

The collision for 69 is handled in a similar manner. As long as the table is big enough, a free 

cell can always be found, but the time to do so can get quite large. Worse, even if the table is 

relatively empty, blocks of occupied cells start forming. This effect, known as primary 

clustering, means that any key that hashes into the cluster will require several attempts to 

resolve the collision, and then it will add to the cluster.  

Although we will not perform the calculations here, it can be shown that the expected number of 

probes using linear probing is roughly 1/2(1 + 1/(1 - )

2

) for insertions and unsuccessful 

searches and 1/2(1 + 1/ (1- )) for successful searches. The calculations are somewhat 

involved. It is easy to see from the code that insertions and unsuccessful searches require the 

same number of probes. A moment's thought suggests that on average, successful searches should 

take less time than unsuccessful searches.  

The corresponding formulas, if clustering were not a problem, are fairly easy to derive. We will 

assume a very large table and that each probe is independent of the previous probes. These 

assumptions are satisfied by a random collision resolution strategy and are reasonable unless 

 is very close to 1. First, we derive the expected number of probes in an unsuccessful 

search. This is just the expected number of probes until we find an empty cell. Since the 

fraction of empty cells is 1 - , the number of cells we expect to probe is 1/(1 - ). The 

number of probes for a successful search is equal to the number of probes required when the 

particular element was inserted. When an element is inserted, it is done as a result of an 

unsuccessful search. Thus we can use the cost of an unsuccessful search to compute the average 

cost of a successful search.  

The caveat is that  changes from 0 to its current value, so that earlier insertions are 

cheaper and should bring the average down. For instance, in the table above,  = 0.5, but the 

cost of accessing 18 is determined when 18 is inserted. At that point,  = 0.2. Since 18 was 

inserted into a relatively empty table, accessing it should be easier than accessing a recently 

inserted element such as 69. We can estimate the average by using an integral to calculate the 

mean value of the insertion time, obtaining  

 

 

These formulas are clearly better than the corresponding formulas for linear probing. Clustering 

is not only a theoretical problem but actually occurs in real implementations. 

Figure 5.12 

compares the performance of linear probing (dashed curves) with what would be expected from more 

random collision resolution. Successful searches are indicated by an S, and unsuccessful searches 

and insertions are marked with U and I, respectively.  

If  = 0.75, then the formula above indicates that 8.5 probes are expected for an insertion in 

linear probing. If  = 0.9, then 50 probes are expected, which is unreasonable. This compares 

with 4 and 10 probes for the respective load factors if clustering were not a problem. We see 

from these formulas that linear probing can be a bad idea if the table is expected to be more 

than half full. If  = 0.5, however, only 2.5 probes are required on average for insertion and 
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only 1.5 probes are required, on average, for a successful search.  

5.4.2. Quadratic Probing

 

Quadratic probing is a collision resolution method that eliminates the primary clustering problem 

of linear probing. Quadratic probing is what you would expect-the collision function is 

quadratic. The popular choice is (i) = i

2

. Figure 5.13 shows the resulting closed table with 

this collision function on the same input used in the linear probing example.  

When 49 collides with 89, the next position attempted is one cell away. This cell is empty, so 49 

is placed there. Next 58 collides at position 8. Then the cell one away is tried but another 

collision occurs. A vacant cell is found at the next cell tried, which is 2

2

 = 4 away. 58 is thus 

placed in cell 2. The same thing happens for 69.  

For linear probing it is a bad idea to let the hash table get nearly full, because performance 

degrades. For quadratic probing, the situation is even more drastic: There is no guarantee of 

finding an empty cell once the table gets more than half full, or even before the table gets half 

full if the table size is not prime. This is because at most half of the table can be used as 

alternate locations to resolve collisions.  

Indeed, we prove now that if the table is half empty and the table size is prime, then we are 

always guaranteed to be able to insert a new element.  

THEOREM 5.1. 

 

If quadratic probing is used, and the table size is prime, then a new element can always be 

inserted if the table is at least half empty.  

PROOF: 

 

Let the table size, H_SIZE, be an (odd) prime greater than 3. We show that the first 

H_SIZE/2  alternate locations are all distinct. Two of these locations are h(x) + i

2

(mod 

H_SIZE) and h(x) + j

2

(mod H_SIZE), where 0 < i, j  H_SIZE/2 . Suppose, for the sake 

of contradiction, that these locations are the same, but i  j. Then 

 

h(x) + i

2

 = h(x) + j

2     

(mod H_SIZE)

 

i

2

 = j

2             

(mod H_SIZE)

 

i

2

 - j

2

 = 0            (mod H_SIZE)

 

(i - j)(i + j) = 0            (mod H_SIZE)
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Figure 5.12 Number of probes plotted against load factor for linear probing (dashed) and random 

strategy. S is successful search,U is unsuccessful search, I is insertion 

 

 

Figure 5.13 Closed hash table with quadratic probing, after each insertion

 

Since H_SIZE is prime, it follows that either (i - j) or (i + j) is equal to 0 (mod H_SIZE). 

Since i and j are distinct, the first option is not possible. Since 0 < i, j < H_SIZE/2

, the second option is also impossible. Thus, the first H_SIZE/2  alternate 

locations are distinct. Since the element to be inserted can also be placed in the cell to which 

it hashes (if there are no collisions), any element has H_SIZE/2  locations into which 

it can go. If at most H_SIZE/2  positions are taken, then an empty spot can always be 

found.  
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If the table is even one more than half full, the insertion could fail (although this is 

extremely unlikely). Therefore, it is important to keep this in mind. It is also crucial that the 

table size be prime.

* 

If the table size is not prime, the number of alternate locations can be 

severely reduced. As an example, if the table size were 16, then the only alternate locations 

would be at distances 1, 4, or 9 away.  

*If the table size is a prime of the form 4k + 3, and the quadratic collision resolution strategy 

f(i) = + i

2

 is used, then the entire table can be probed. The cost is a slightly more complicated 

routine.  

Standard deletion cannot be performed in a closed hash table, because the cell might have caused 

a collision to go past it. For instance, if we remove 89, then virtually all of the remaining 

finds will fail. Thus, closed hash tables require lazy deletion, although in this case there 

really is no laziness implied.  

The type declarations required to implement closed hashing are in 

Figure 5.14. Instead of an 

array of lists, we have an array of hash table entry cells, which, as in open hashing, are 

allocated dynamically. Initializing the table (Figure 5.15) consists of allocating space (lines 1 

through 10) and then setting the info field to empty for each cell.  

enum kind_of_entry { legitimate, empty, deleted };

 

struct hash_entry

 

{

 

element_type element;

 

enum kind_of_entry info;

 

};

 

typedef INDEX position;

 

typedef struct hash_entry cell;

 

/* the_cells is an array of hash_entry cells, allocated later */

 

struct hash_tbl

 

{

 

unsigned int table_size;

 

cell *the_cells;

 

};

 

typedef struct hash_tbl *HASH_TABLE;

 

Figure 5.14 Type declaration for closed hash tables

 

HASH_TABLE

 

initialize_table( unsigned int table_size )

 

{
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HASH_TABLE H; 

int i;

 

/*1*/       if( table_size < MIN_TABLE_SIZE )

 

{

 

/*2*/            error("Table size too small");

 

/*3*/            return NULL;

 

}

 

/* Allocate table */

 

/*4*/       H = (HASH_TABLE) malloc( sizeof ( struct hash_tbl ) );

 

/*5*/       if( H == NULL )

 

/*6*/           fatal_error("Out of space!!!");

 

/*7*/       H->table_size = next_prime( table_size );

 

/* Allocate cells */

 

/*8*/       H->the cells = (cell *) malloc

 

( sizeof ( cell ) * H->table_size );

 

/*9*/       if( H->the_cells == NULL )

 

/*10*/           fatal_error("Out of space!!!");

 

/*11*/      for(i=0; i<H->table_size; i++ )

 

/*12*/           H->the_cells[i].info = empty;

 

/*13*/      return H;

 

}

 

Figure 5.15 Routine to initialize closed hash table

 

As with open hashing, find(key, H) will return the position of key in the hash table. If key is 

not present, then find will return the last cell. This cell is where key would be inserted if 

needed. Further, because it is marked empty, it is easy to tell that the find failed. We assume 

for convenience that the hash table is at least twice as large as the number of elements in the 

table, so quadratic resolution will always work. Otherwise, we would need to test i before line 

4. In the implementation in 

Figure 5.16, elements that are marked as deleted count as being in 

the table. This can cause problems, because the table can get too full prematurely. We shall 

discuss this item presently.  

Lines 4 through 6 represent the fast way of doing quadratic resolution. From the definition of 

the quadratic resolution function, f(i) = f(i - 1) + 2i -1, so the next cell to try can be 

determined with a multiplication by two (really a bit shift) and a decrement. If the new location 

is past the array, it can be put back in range by subtracting H_SIZE. This is faster than the 

obvious method, because it avoids the multiplication and division that seem to be required. The 

页码，15/30Structures, Algorithm Analysis: CHAPTER 5: HASHING

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



variable name i is not the best one to use; we only use it to be consistent with the text.  

position

 

find( element_type key, HASH_TABLE H )

 

{

 

position i, current_pos;

 

/*1*/       i = 0;

 

/*2*/       current_pos = hash( key, H->table_size );

 

/* Probably need strcmp! */

 

/*3*/       while( (H->the_cells[current_pos].element != key ) &&

 

(H->the_cells[current_pos].info != empty ) )

 

{

 

/*4*/             current_pos += 2*(++i) - 1;

 

/*5*/             if( current_pos >= H->table_size )

 

/*6*/                  current_pos -= H->table_size;

 

}

 

/*7*/       return current_pos;

 

}

 

Figure 5.16 Find routine for closed hashing with quadratic probing

 

The final routine is insertion. As with open hashing, we do nothing if key is already present. It 

is a simple modification to do something else. Otherwise, we place it at the spot suggested by 

the find routine. The code is shown in 

Figure 5.17. 

 

Although quadratic probing eliminates primary clustering, elements that hash to the same position 

will probe the same alternate cells. This is known as secondary clustering. Secondary clustering 

is a slight theoretical blemish. Simulation results suggest that it generally causes less than an 

extra  probe per search. The following technique eliminates this, but does so at the cost of 

extra multiplications and divisions.  

5.4.3. Double Hashing

 

The last collision resolution method we will examine is double hashing. For double hashing, one 

popular choice is f(i) = i  h

2

(x). This formula says that we apply a second hash function to 

x and probe at a distance h

2

(x), 2h

2

(x), . . ., and so on. A poor choice of h

2

(x) would be 
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disastrous. For instance, the obvious choice h

2

(x) = x mod 9 would not help if 99 were inserted 

into the input in the previous examples. Thus, the function must never evaluate to zero. It is 

also important to make sure all cells can be probed (this is not possible in the example below, 

because the table size is not prime). A function such as h

2

(x) = R - (x mod R), with R a prime 

smaller than H_SIZE, will work well. If we choose R = 7, then Figure 5.18 shows the results of 

inserting the same keys as before.  

void

 

insert( element_type key, HASH_TABLE H )

 

{

 

position pos;

 

pos = find( key, H );

 

if( H->the_cells[pos].info != legitimate )

 

{    /* ok to insert here */

 

H->the_cells[pos].info = legitimate;

 

H->the_cells[pos].element = key;

 

/* Probably need strcpy!! */

 

}

 

}

 

Figure 5.17 Insert routine for closed hash tables with quadratic probing

 

 

 

Figure 5.18 Closed hash table with double hashing, after each insertion
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The first collision occurs when 49 is inserted. h

2

(49) = 7 - 0 = 7, so 49 is inserted in position 

6. h

2

(58) = 7 - 2 = 5, so 58 is inserted at location 3. Finally, 69 collides and is inserted at a 

distance h

2

(69) = 7 - 6 = 1 away. If we tried to insert 60 in position 0, we would have a 

collision. Since h

2

(60) = 7 - 4 = 3, we would then try positions 3, 6, 9, and then 2 until an 

empty spot is found. It is generally possible to find some bad case, but there are not too many 

here.  

As we have said before, the size of our sample hash table is not prime. We have done this for 

convenience in computing the hash function, but it is worth seeing why it is important to make 

sure the table size is prime when double hashing is used. If we attempt to insert 23 into the 

table, it would collide with 58. Since h

2

(23) = 7 - 2 = 5, and the table size is 10, we 

essentially have only one alternate location, and it is already taken. Thus, if the table size is 

not prime, it is possible to run out of alternate locations prematurely. However, if double 

hashing is correctly implemented, simulations imply that the expected number of probes is almost 

the same as for a random collision resolution strategy. This makes double hashing theoretically 

interesting. Quadratic probing, however, does not require the use of a second hash function and 

is thus likely to be simpler and faster in practice.  

5.5. Rehashing

 

If the table gets too full, the running time for the operations will start taking too long and 

inserts might fail for closed hashing with quadratic resolution. This can happen if there are too 

many deletions intermixed with insertions. A solution, then, is to build another table that is 

about twice as big (with associated new hash function) and scan down the entire original hash 

table, computing the new hash value for each (non-deleted) element and inserting it in the new 

table.  

As an example, suppose the elements 13, 15, 24, and 6 are inserted into a closed hash table of 

size 7. The hash function is h(x) = x mod 7. Suppose linear probing is used to resolve 

collisions. The resulting hash table appears in 

Figure 5.19. 

 

If 23 is inserted into the table, the resulting table in Figure 5.20 will be over 70 percent 

full. Because the table is so full, a new table is created. The size of this table is 17, because 

this is the first prime which is twice as large as the old table size. The new hash function is 

then h(x) = x mod 17. The old table is scanned, and elements 6, 15, 23, 24, and 13 are inserted 

into the new table. The resulting table appears in Figure 5.21.  

This entire operation is called rehashing. This is obviously a very expensive operation -- the 

running time is O(n), since there are n elements to rehash and the table size is roughly 2n, but 

it is actually not all that bad, because it happens very infrequently. In particular, there must 

have been n/2 inserts prior to the last rehash, so it essentially adds a constant cost to each 

insertion.* If this data structure is part of the program, the effect is not noticeable. On the 

other hand, if the hashing is performed as part of an interactive system, then the unfortunate 

user whose insertion caused a rehash could see a slowdown.  

*This is why the new table is made twice as large as the old table. 

 

页码，18/30Structures, Algorithm Analysis: CHAPTER 5: HASHING

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



 

 

Figure 5.19 Closed hash table with linear probing with input 13,15, 6, 24

 

 

 

Figure 5.20 Closed hash table with linear probing after 23 is inserted
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Figure 5.21 Closed hash table after rehashing

 

Rehashing can be implemented in several ways with quadratic probing. One alternative is to rehash 

as soon as the table is half full. The other extreme is to rehash only when an insertion fails. A 

third, middle of the road, strategy is to rehash when the table reaches a certain load factor. 

Since performance does degrade as the load factor increases, the third strategy, implemented with 

a good cutoff, could be best.  

Rehashing frees the programmer from worrying about the table size and is important because hash 

tables cannot be made arbitrarily large in complex programs. The exercises ask you to investigate 

the use of rehashing in conjunction with lazy deletion. Rehashing can be used in other data 

structures as well. For instance, if the queue data structure of 

Chapter 3 became full, we could 

declare a double-sized array and copy everything over, freeing the original.  

Figure 5.22 shows that rehashing is simple to implement. 

 

HASH_TABLE

 

rehash( HASH_TABLE H )

 

{

 

unsigned int i, old_size;

 

cell *old_cells;

 

/*1*/        old_cells = H->the_cells;
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/*2*/        old_size = H->table_size; 

/* Get a new, empty table */

 

/*3*/       H = initialize_table( 2*old_size );

 

/* Scan through old table, reinserting into new */

 

/*4*/       for( i=0; i<old_size; i++ )

 

/*5*/            if( old_cells[i].info == legitimate )

 

/*6*/                 insert( old_cells[i].element, H );

 

/*7*/       free( old_cells );

 

/*8*/       return H;

 

}

 

Figure 5.22

 

5.6. Extendible Hashing

 

Our last topic in this chapter deals with the case where the amount of data is too large to fit 

in main memory. As we saw in Chapter 4, the main consideration then is the number of disk 

accesses required to retrieve data.  

As before, we assume that at any point we have n records to store; the value of n changes over 

time. Furthermore, at most m records fit in one disk block. We will use m = 4 in this section.  

If either open hashing or closed hashing is used, the major problem is that collisions could 

cause several blocks to be examined during a find, even for a well-distributed hash table. 

Furthermore, when the table gets too full, an extremely expensive rehashing step must be 

performed, which requires O(n) disk accesses.  

A clever alternative, known as extendible hashing, allows a find to be performed in two disk 

accesses. Insertions also require few disk accesses.  

We recall from Chapter 4 that a B-tree has depth O(log

m/2

n

). As m increases, the depth of a B-

tree decreases. We could in theory choose m to be so large that the depth of the B-tree would be 

1. Then any find after the first would take one disk access, since, presumably, the root node 

could be stored in main memory. The problem with this strategy is that the branching factor is so 

high that it would take considerable processing to determine which leaf the data was in. If the 

time to perform this step could be reduced, then we would have a practical scheme. This is 

exactly the strategy used by extendible hashing.  

Let us suppose, for the moment, that our data consists of several six-bit integers. Figure 5.23 

shows an extendible hashing scheme for this data. The root of the "tree" contains four pointers 

determined by the leading two bits of the data. Each leaf has up to m = 4 elements. It happens 

that in each leaf the first two bits are identical; this is indicated by the number in 

parentheses. To be more formal, D will represent the number of bits used by the root, which is 

sometimes known as the directory. The number of entries in the directory is thus 2

D

. d

l

 is the 

number of leading bits that all the elements of some leaf l have in common. d

l

 will depend on the 
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particular leaf, and d

l

  D. 

 

 

 

Figure 5.23 Extendible hashing: original data

 

Suppose that we want to insert the key 100100. This would go into the third leaf, but as the 

third leaf is already full, there is no room. We thus split this leaf into two leaves, which are 

now determined by the first three bits. This requires increasing the directory size to 3. These 

changes are reflected in 

Figure 5.24. 

 

Notice that all of the leaves not involved in the split are now pointed to by two adjacent 

directory entries. Thus, although an entire directory is rewritten, none of the other leaves are 

actually accessed.  

If the key 000000 is now inserted, then the first leaf is split, generating two leaves with d

l

 = 

3. Since D = 3, the only change required in the directory is the updating of the 000 and 001 

pointers. See Figure 5.25.  

This very simple strategy provides quick access times for insert and find operations on large 

databases. There are a few important details we have not considered.  

First, it is possible that several directory splits will be required if the elements in a leaf 

agree in more than D + 1 leading bits. For instance, starting at the original example, with D = 

2, if 111010, 111011, and finally 111100 are inserted, the directory size must be increased to 4 

to distinguish between the five keys. This is an easy detail to take care of, but must not be 

forgotten. Second, there is the possibility of duplicate keys; if there are more than m 

duplicates, then this algorithm does not work at all. In this case, some other arrangements need 

to be made.  

These possibilities suggest that it is important for the bits to be fairly random. This can be 

accomplished by hashing the keys into a reasonably long integer; hence the reason for the name.  
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Figure 5.24 Extendible hashing: after insertion of 100100 and directory split

 

 

 

Figure 5.25 Extendible hashing: after insertion of 000000 and leaf split

 

We close by mentioning some of the performance properties of extendible hashing, which are 

derived after a very difficult analysis. These results are based on the reasonable assumption 

that the bit patterns are uniformly distributed.  

The expected number of leaves is (n / m) log

2

 e. Thus the average leaf is ln 2 = 0.69 full. This 

is the same as B-trees, which is not entirely surprising, since for both data structures new 

nodes are created when the (m + 1)st entry is added.  

The more surprising result is that the expected size of the directory (in other words, 2

D

) is O

(n

1+1 /m

/ m). If m is very small, then the directory can get unduly large. In this case, we can 

have the leaves contain pointers to the records instead of the actual records, thus increasing 

the value of m. This adds a second disk access to each find operation in order to maintain a 

smaller directory. If the directory is too large to fit in main memory, the second disk access 

would be needed anyway.  
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Summary 

Hash tables can be used to implement the insert and find operations in constant average time. It 

is especially important to pay attention to details such as load factor when using hash tables, 

since otherwise the time bounds are not valid. It is also important to choose the hash function 

carefully when the key is not a short string or integer.  

For open hashing, the load factor should be close to 1, although performance does not 

significantly degrade unless the load factor becomes very large. For closed hashing, the load 

factor should not exceed 0.5, unless this is completely unavoidable. If linear probing is used, 

performance degenerates rapidly as the load factor approaches 1. Rehashing can be implemented to 

allow the table to grow (and shrink), thus maintaining a reasonable load factor. This is 

important if space is tight and it is not possible just to declare a huge hash table.  

Binary search trees can also be used to implement insert and find operations. Although the 

resulting average time bounds are O(log n), binary search trees also support routines that 

require order and are thus more powerful. Using a hash table, it is not possible to find the 

minimum element. It is not possible to search efficiently for a string unless the exact string is 

known. A binary search tree could quickly find all items in a certain range; this is not 

supported by hash tables. Furthermore, the O(log n) bound is not necessarily that much more than 

O (1), especially since no multiplications or divisions are required by search trees.  

On the other hand, the worst case for hashing generally results from an implementation error, 

whereas sorted input can make binary trees perform poorly. Balanced search trees are quite 

expensive to implement, so if no ordering information is required and there is any suspicion that 

the input might be sorted, then hashing is the data structure of choice.  

Hashing applications are abundant. Compilers use hash tables to keep track of declared variables 

in source code. The data structure is known as a symbol table. Hash tables are the ideal 

application for this problem because only inserts and finds are performed. Identifiers are 

typically short, so the hash function can be computed quickly.  

A hash table is useful for any graph theory problem where the nodes have real names instead of 

numbers. Here, as the input is read, vertices are assigned integers from 1 onwards by order of 

appearance. Again, the input is likely to have large groups of alphabetized entries. For example, 

the vertices could be computers. Then if one particular installation lists its computers as ibm1, 

ibm2, ibm3, . . . , there could be a dramatic effect on efficiency if a search tree is used.  

A third common use of hash tables is in programs that play games. As the program searches through 

different lines of play, it keeps track of positions it has seen by computing a hash function 

based on the position (and storing its move for that position). If the same position reoccurs, 

usually by a simple transposition of moves, the program can avoid expensive recomputation. This 

general feature of all game-playing programs is known as the transposition table.  

Yet another use of hashing is in online spelling checkers. If misspelling detection (as opposed 
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to correction) is important, an entire dictionary can be prehashed and words can be checked in 

constant time. Hash tables are well suited for this, because it is not important to alphabetize 

words; printing out misspellings in the order they occurred in the document is certainly 

acceptable.  

We close this chapter by returning to the word puzzle problem of 

Chapter 1. If the second 

algorithm described in Chapter 1 is used, and we assume that the maximum word size is some small 

constant, then the time to read in the dictionary containing W words and put it in a hash table 

is O(W). This time is likely to be dominated by the disk I/O and not the hashing routines. The 

rest of the algorithm would test for the presence of a word for each ordered quadruple (row, 

column, orientation, number of characters). As each lookup would be O(1), and there are only a 

constant number of orientations (8) and characters per word, the running time of this phase would 

be O(r  c). The total running time would be O (r  c + W), which is a distinct 

improvement over the original O (r  c  W). We could make further optimizations, which 

would decrease the running time in practice; these are described in the exercises.  

Exercises

 

5.1 Given input {4371, 1323, 6173, 4199, 4344, 9679, 1989} and a hash function h(x) = x(mod 10), 

show the resulting  

a. open hash table 

 

b. closed hash table using linear probing 

 

c. closed hash table using quadratic probing 

 

d. closed hash table with second hash function h

2

(x) = 7 - (x mod 7) 

 

5.2 Show the result of rehashing the hash tables in Exercise 5.1. 

 

5.3 Write a program to compute the number of collisions required in a long random sequence of 

insertions using linear probing, quadratic probing, and double hashing.  

5.4 A large number of deletions in an open hash table can cause the table to be fairly empty, 

which wastes space. In this case, we can rehash to a table half as large. Assume that we rehash 

to a larger table when there are twice as many elements as the table size. How empty should an 

open table be before we rehash to a smaller table?  

5.5 An alternative collision resolution strategy is to define a sequence, f(i) = r

i

, where r

0

 = 0

and r

1

, r

2

, . . . , r

n

 is a random permutation of the first n integers (each integer appears 
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exactly once).  

a. Prove that under this strategy, if the table is not full, then the collision can always be 

resolved.  

b. Would this strategy be expected to eliminate clustering? 

 

c. If the load factor of the table is , what is the expected time to perform an insert? 

 

d. If the load factor of the table is  , what is the expected time for a successful search? 

 

e. Give an efficient algorithm (theoretically as well as practically) to generate the random 

sequence. Explain why the rules for choosing P are important.  

5.6 What are the advantages and disadvantages of the various collision resolution strategies? 

 

5.7 Write a program to implement the following strategy for multiplying two sparse polynomials 

P

1

, P

2

 of size m and n respectively. Each polynomial is represented as a linked list with cells 

consisting of a coefficient, an exponent, and a next pointer (Exercise 3.7). We multiply each 

term in P

1

 by a term in P

2

 for a total of mn operations. One method is to sort these terms and 

combine like terms, but this requires sorting mn records, which could be expensive, especially in 

small-memory environments. Alternatively, we could merge terms as they are computed and then sort 

the result.  

a. Write a program to implement the alternate strategy. 

 

b. If the output polynomial has about O(m + n) terms, then what is the running time of both 

methods?  

5.8 A spelling checker reads an input file and prints out all words not in some online 

dictionary. Suppose the dictionary contains 30,000 words and the file is one megabyte, so that 

the algorithm can make only one pass through the input file. A simple strategy is to read the 

dictionary into a hash table and look for each input word as it is read. Assuming that an average 

word is seven characters and that it is possible to store words of length l in l + 1 bytes (so 

space waste is not much of a consideration), and assuming a closed table, how much space does 

this require?  

5.9 If memory is limited and the entire dictionary cannot be stored in a hash table, we can still 

get an efficient algorithm that almost always works. We declare an array H_TABLE of bits 

(initialized to zeros) from 0 to TABLE_SIZE - 1. As we read in a word, we set H_TABLE[hash(word)] 

= 1. Which of the following is true?  

a. If a word hashes to a location with value 0, the word is not in the dictionary. 

 

b. If a word hashes to a location with value 1, then the word is in the dictionary. 
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Suppose we choose TABLE_SIZE = 300,007.  

c. How much memory does this require? 

 

d. What is the probability of an error in this algorithm? 

 

e. A typical document might have about three actual misspellings per page of 500 words. Is this 

algorithm usable?  

5.10 *Describe a procedure that avoids initializing a hash table (at the expense of memory). 

 

5.11 Suppose we want to find the first occurrence of a string p

1

p

2

. . . p

k

 in a long input string 

a

1

a

2 

. . . a

n

. We can solve this problem by hashing the pattern string, obtaining a hash value 

h

p

, and comparing this value with the hash value formed from a

1

a

2 

. . . a

k

,a

2

a

3 

. . . a

k+1

,a

3

a

4 

. 

. . a

k+2

, and so on until a

n-k

+1a

n-k+2 

. . . a

n

. If we have a match of hash values, we compare 

the strings character by character to verify the match. We return the position (in a) if the 

strings actually do match, and we continue in the unlikely event that the match is false.  

*a. Show that if the hash value of a

i

a

i+1 . . . 

a

i + k - 1

 is known, then the hash value of 

a

i+1

a

i+2 

. . . a

i+k

 can be computed in constant time.  

b. Show that the running time is O(k + n) plus the time spent refuting false matches. 

 

*c. Show that the expected number of false matches is negligible. 

 

d. Write a program to implement this algorithm. 

 

**e. Describe an algorithm that runs in O(k + n) worst case time. 

 

**f. Describe an algorithm that runs in O(n/k) average time. 

 

5.12 A BASIC program consists of a series of statements, each of which is numbered in ascending 
order. Control is passed by use of a goto or gosub and a statement number. Write a program that 

reads in a legal BASIC program and renumbers the statements so that the first starts at number f
and each statement has a number d higher than the previous statement. You may assume an upper 

limit of n statements, but the statement numbers in the input might be as large as a 32-bit 

integer. Your program must run in linear time.  

5.13 a. Implement the word puzzle program using the algorithm described at the end of the 

chapter.  

b. We can get a big speed increase by storing, in addition to each word w, all of w's prefixes. 

(If one of w's prefixes is another word in the dictionary, it is stored as a real word). Although 

this may seem to increase the size of the hash table drastically, it does not, because many words 

have the same prefixes. When a scan is performed in a particular direction, if the word that is 

looked up is not even in the hash table as a prefix, then the scan in that direction can be 

terminated early. Use this idea to write an improved program to solve the word puzzle.  
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c. If we are willing to sacrifice the sanctity of the hash table ADT, we can speed up the 
program in part (b) by noting that if, for example, we have just computed the hash function for 

"excel," we do not need to compute the hash function for "excels" from scratch. Adjust your hash 

function so that it can take advantage of its previous calculation.  

d. In 

Chapter 2, we suggested using binary search. Incorporate the idea of using prefixes into 

your binary search algorithm. The modification should be simple. Which algorithm is faster?  

5.14 Show the result of inserting the keys 10111101, 00000010, 10011011, 10111110, 01111111, 

01010001, 10010110, 00001011, 11001111, 10011110, 11011011, 00101011, 01100001, 11110000, 

01101111 into an initially empty extendible hashing data structure with m = 4.  

5.15 Write a program to implement extendible hashing. If the table is small enough to fit in main 

memory, how does its performance compare with open and closed hashing?  
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